Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes.

Identifieur interne : 000193 ( Main/Exploration ); précédent : 000192; suivant : 000194

ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes.

Auteurs : Philip M. Mullineaux [Royaume-Uni] ; Marino Exposito-Rodriguez [Royaume-Uni] ; Pierre Philippe Laissue [Royaume-Uni] ; Nicholas Smirnoff [Royaume-Uni]

Source :

RBID : pubmed:29410363

Descripteurs français

English descriptors

Abstract

Like all aerobic organisms, plants and algae co-opt reactive oxygen species (ROS) as signalling molecules to drive cellular responses to changes in their environment. In this respect, there is considerable commonality between all eukaryotes imposed by the constraints of ROS chemistry, similar metabolism in many subcellular compartments, the requirement for a high degree of signal specificity and the deployment of thiol peroxidases as transducers of oxidising equivalents to regulatory proteins. Nevertheless, plants and algae carry out specialised signalling arising from oxygenic photosynthesis in chloroplasts and photoautotropism, which often induce an imbalance between absorption of light energy and the capacity to use it productively. A key means of responding to this imbalance is through communication of chloroplasts with the nucleus to adjust cellular metabolism. Two ROS, singlet oxygen (1O2) and hydrogen peroxide (H2O2), initiate distinct signalling pathways when photosynthesis is perturbed. 1O2, because of its potent reactivity means that it initiates but does not transduce signalling. In contrast, the lower reactivity of H2O2 means that it can also be a mobile messenger in a spatially-defined signalling pathway. How plants translate a H2O2 message to bring about changes in gene expression is unknown and therefore, we draw on information from other eukaryotes to propose a working hypothesis. The role of these ROS generated in other subcellular compartments of plant cells in response to HL is critically considered alongside other eukaryotes. Finally, the responses of animal cells to oxidative stress upon high irradiance exposure is considered for new comparisons between plant and animal cells.

DOI: 10.1016/j.freeradbiomed.2018.01.033
PubMed: 29410363


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes.</title>
<author>
<name sortKey="Mullineaux, Philip M" sort="Mullineaux, Philip M" uniqKey="Mullineaux P" first="Philip M" last="Mullineaux">Philip M. Mullineaux</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK. Electronic address: mullin@essex.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ</wicri:regionArea>
<wicri:noRegion>Colchester CO4 3SQ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Exposito Rodriguez, Marino" sort="Exposito Rodriguez, Marino" uniqKey="Exposito Rodriguez M" first="Marino" last="Exposito-Rodriguez">Marino Exposito-Rodriguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ</wicri:regionArea>
<wicri:noRegion>Colchester CO4 3SQ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laissue, Pierre Philippe" sort="Laissue, Pierre Philippe" uniqKey="Laissue P" first="Pierre Philippe" last="Laissue">Pierre Philippe Laissue</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ</wicri:regionArea>
<wicri:noRegion>Colchester CO4 3SQ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smirnoff, Nicholas" sort="Smirnoff, Nicholas" uniqKey="Smirnoff N" first="Nicholas" last="Smirnoff">Nicholas Smirnoff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD</wicri:regionArea>
<wicri:noRegion>Exeter EX4 4QD</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29410363</idno>
<idno type="pmid">29410363</idno>
<idno type="doi">10.1016/j.freeradbiomed.2018.01.033</idno>
<idno type="wicri:Area/Main/Corpus">000235</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000235</idno>
<idno type="wicri:Area/Main/Curation">000235</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000235</idno>
<idno type="wicri:Area/Main/Exploration">000235</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes.</title>
<author>
<name sortKey="Mullineaux, Philip M" sort="Mullineaux, Philip M" uniqKey="Mullineaux P" first="Philip M" last="Mullineaux">Philip M. Mullineaux</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK. Electronic address: mullin@essex.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ</wicri:regionArea>
<wicri:noRegion>Colchester CO4 3SQ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Exposito Rodriguez, Marino" sort="Exposito Rodriguez, Marino" uniqKey="Exposito Rodriguez M" first="Marino" last="Exposito-Rodriguez">Marino Exposito-Rodriguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ</wicri:regionArea>
<wicri:noRegion>Colchester CO4 3SQ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laissue, Pierre Philippe" sort="Laissue, Pierre Philippe" uniqKey="Laissue P" first="Pierre Philippe" last="Laissue">Pierre Philippe Laissue</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ</wicri:regionArea>
<wicri:noRegion>Colchester CO4 3SQ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smirnoff, Nicholas" sort="Smirnoff, Nicholas" uniqKey="Smirnoff N" first="Nicholas" last="Smirnoff">Nicholas Smirnoff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD</wicri:regionArea>
<wicri:noRegion>Exeter EX4 4QD</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Free radical biology & medicine</title>
<idno type="eISSN">1873-4596</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Nucleus (genetics)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Chlorophyta (genetics)</term>
<term>Chlorophyta (metabolism)</term>
<term>Chlorophyta (radiation effects)</term>
<term>Chloroplasts (genetics)</term>
<term>Chloroplasts (metabolism)</term>
<term>Eukaryota (genetics)</term>
<term>Eukaryota (metabolism)</term>
<term>Eukaryota (radiation effects)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Light (MeSH)</term>
<term>Oxidative Stress (genetics)</term>
<term>Plants (genetics)</term>
<term>Plants (metabolism)</term>
<term>Plants (radiation effects)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Signal Transduction (radiation effects)</term>
<term>Singlet Oxygen (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chlorophyta (effets des radiations)</term>
<term>Chlorophyta (génétique)</term>
<term>Chlorophyta (métabolisme)</term>
<term>Chloroplastes (génétique)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Eucaryotes (effets des radiations)</term>
<term>Eucaryotes (génétique)</term>
<term>Eucaryotes (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Oxygène singulet (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Plantes (effets des radiations)</term>
<term>Plantes (génétique)</term>
<term>Plantes (métabolisme)</term>
<term>Stress oxydatif (génétique)</term>
<term>Transduction du signal (effets des radiations)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hydrogen Peroxide</term>
<term>Reactive Oxygen Species</term>
<term>Singlet Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Chlorophyta</term>
<term>Eucaryotes</term>
<term>Plantes</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Chlorophyta</term>
<term>Chloroplasts</term>
<term>Eukaryota</term>
<term>Oxidative Stress</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chlorophyta</term>
<term>Chloroplastes</term>
<term>Eucaryotes</term>
<term>Noyau de la cellule</term>
<term>Plantes</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Chlorophyta</term>
<term>Chloroplasts</term>
<term>Eukaryota</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorophyta</term>
<term>Chloroplastes</term>
<term>Espèces réactives de l'oxygène</term>
<term>Eucaryotes</term>
<term>Noyau de la cellule</term>
<term>Oxygène singulet</term>
<term>Peroxyde d'hydrogène</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Chlorophyta</term>
<term>Eukaryota</term>
<term>Plants</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Lumière</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Like all aerobic organisms, plants and algae co-opt reactive oxygen species (ROS) as signalling molecules to drive cellular responses to changes in their environment. In this respect, there is considerable commonality between all eukaryotes imposed by the constraints of ROS chemistry, similar metabolism in many subcellular compartments, the requirement for a high degree of signal specificity and the deployment of thiol peroxidases as transducers of oxidising equivalents to regulatory proteins. Nevertheless, plants and algae carry out specialised signalling arising from oxygenic photosynthesis in chloroplasts and photoautotropism, which often induce an imbalance between absorption of light energy and the capacity to use it productively. A key means of responding to this imbalance is through communication of chloroplasts with the nucleus to adjust cellular metabolism. Two ROS, singlet oxygen (
<sup>1</sup>
O
<sub>2</sub>
) and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), initiate distinct signalling pathways when photosynthesis is perturbed.
<sup>1</sup>
O
<sub>2</sub>
, because of its potent reactivity means that it initiates but does not transduce signalling. In contrast, the lower reactivity of H
<sub>2</sub>
O
<sub>2</sub>
means that it can also be a mobile messenger in a spatially-defined signalling pathway. How plants translate a H
<sub>2</sub>
O
<sub>2</sub>
message to bring about changes in gene expression is unknown and therefore, we draw on information from other eukaryotes to propose a working hypothesis. The role of these ROS generated in other subcellular compartments of plant cells in response to HL is critically considered alongside other eukaryotes. Finally, the responses of animal cells to oxidative stress upon high irradiance exposure is considered for new comparisons between plant and animal cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29410363</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>122</Volume>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Free radical biology & medicine</Title>
<ISOAbbreviation>Free Radic Biol Med</ISOAbbreviation>
</Journal>
<ArticleTitle>ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes.</ArticleTitle>
<Pagination>
<MedlinePgn>52-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0891-5849(18)30043-1</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.freeradbiomed.2018.01.033</ELocationID>
<Abstract>
<AbstractText>Like all aerobic organisms, plants and algae co-opt reactive oxygen species (ROS) as signalling molecules to drive cellular responses to changes in their environment. In this respect, there is considerable commonality between all eukaryotes imposed by the constraints of ROS chemistry, similar metabolism in many subcellular compartments, the requirement for a high degree of signal specificity and the deployment of thiol peroxidases as transducers of oxidising equivalents to regulatory proteins. Nevertheless, plants and algae carry out specialised signalling arising from oxygenic photosynthesis in chloroplasts and photoautotropism, which often induce an imbalance between absorption of light energy and the capacity to use it productively. A key means of responding to this imbalance is through communication of chloroplasts with the nucleus to adjust cellular metabolism. Two ROS, singlet oxygen (
<sup>1</sup>
O
<sub>2</sub>
) and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), initiate distinct signalling pathways when photosynthesis is perturbed.
<sup>1</sup>
O
<sub>2</sub>
, because of its potent reactivity means that it initiates but does not transduce signalling. In contrast, the lower reactivity of H
<sub>2</sub>
O
<sub>2</sub>
means that it can also be a mobile messenger in a spatially-defined signalling pathway. How plants translate a H
<sub>2</sub>
O
<sub>2</sub>
message to bring about changes in gene expression is unknown and therefore, we draw on information from other eukaryotes to propose a working hypothesis. The role of these ROS generated in other subcellular compartments of plant cells in response to HL is critically considered alongside other eukaryotes. Finally, the responses of animal cells to oxidative stress upon high irradiance exposure is considered for new comparisons between plant and animal cells.</AbstractText>
<CopyrightInformation>Copyright © 2018. Published by Elsevier Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mullineaux</LastName>
<ForeName>Philip M</ForeName>
<Initials>PM</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK. Electronic address: mullin@essex.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Exposito-Rodriguez</LastName>
<ForeName>Marino</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laissue</LastName>
<ForeName>Pierre Philippe</ForeName>
<Initials>PP</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smirnoff</LastName>
<ForeName>Nicholas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/I020071/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/P026656/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Free Radic Biol Med</MedlineTA>
<NlmUniqueID>8709159</NlmUniqueID>
<ISSNLinking>0891-5849</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>17778-80-2</RegistryNumber>
<NameOfSubstance UI="D026082">Singlet Oxygen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000460" MajorTopicYN="N">Chlorophyta</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056890" MajorTopicYN="N">Eukaryota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026082" MajorTopicYN="N">Singlet Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Animal cells</Keyword>
<Keyword MajorTopicYN="Y">Chloroplast-to-nucleus communication</Keyword>
<Keyword MajorTopicYN="Y">High light</Keyword>
<Keyword MajorTopicYN="Y">Hydrogen peroxide</Keyword>
<Keyword MajorTopicYN="Y">Microdomains</Keyword>
<Keyword MajorTopicYN="Y">Mitochondria</Keyword>
<Keyword MajorTopicYN="Y">Peroxisomes</Keyword>
<Keyword MajorTopicYN="Y">Photosynthesis</Keyword>
<Keyword MajorTopicYN="Y">Plant cells</Keyword>
<Keyword MajorTopicYN="Y">ROS-mediated signalling</Keyword>
<Keyword MajorTopicYN="Y">Redox relay</Keyword>
<Keyword MajorTopicYN="Y">Retrograde signalling</Keyword>
<Keyword MajorTopicYN="Y">Singlet oxygen</Keyword>
<Keyword MajorTopicYN="Y">Thiol peroxidases</Keyword>
<Keyword MajorTopicYN="Y">Yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29410363</ArticleId>
<ArticleId IdType="pii">S0891-5849(18)30043-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.freeradbiomed.2018.01.033</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Mullineaux, Philip M" sort="Mullineaux, Philip M" uniqKey="Mullineaux P" first="Philip M" last="Mullineaux">Philip M. Mullineaux</name>
</noRegion>
<name sortKey="Exposito Rodriguez, Marino" sort="Exposito Rodriguez, Marino" uniqKey="Exposito Rodriguez M" first="Marino" last="Exposito-Rodriguez">Marino Exposito-Rodriguez</name>
<name sortKey="Laissue, Pierre Philippe" sort="Laissue, Pierre Philippe" uniqKey="Laissue P" first="Pierre Philippe" last="Laissue">Pierre Philippe Laissue</name>
<name sortKey="Smirnoff, Nicholas" sort="Smirnoff, Nicholas" uniqKey="Smirnoff N" first="Nicholas" last="Smirnoff">Nicholas Smirnoff</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000193 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000193 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29410363
   |texte=   ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29410363" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020